

WAS7227Q

USB High speed (480Mbps), DPDT Analog Switch

Descriptions

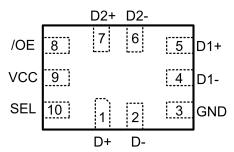
The WAS7227Q is a high performance, double pole double throw (DPDT) CMOS analog switch that operates from a single +2.5V to +5.5V power supply.

The WAS7227Q is designed for switching of high-speed USB2.0 signals in handset and consumer applications, such as cell phones, digital cameras, and notebooks with hubs or controllers with limited USB I/Os.

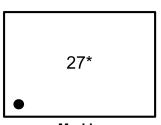
The WAS7227Q has low bit-to-bit skew and high channel-to-channel noise isolation, and is compatible with various standards, such as high-speed USB 2.0 (480Mbps). Each switch is bi-directional and offers little attenuation of the high-speed signals at the outputs. Its bandwidth is quite marginal to pass high-speed USB 2.0 differential signals (480Mbps) with good signal integrity.

The WAS7227Q is featured with special circuitry on the D+/D-, which allows the device to withstand a VBUS short to D+ or D- when the USB devices are either powered off or on.

The SEL/OE pin has overvoltage protection that allows voltages above VCC, up to 7.0V to be present on the pin without damage or disruption of operation of the part, regardless of the operating voltage. The WAS7227Q is also featured with smart circuitry to minimize VCC leakage current even when SEL/OE control voltage is lower than VCC supply voltage. In other word, there is no need of additional device to shift SEL/OE level to be the same as that of VCC in real application.


The WAS7227Q is available in QFN1418-10L package. Standard products are Pb-Free and halogen-Free.

Applications


- Cell phones
- MID
- Router
- Other electronics equipments

Http//:www.sh-willsemi.com

Pin configuration (Top view)

Marking

27 = Device code

= Month (A~Z)

Order information

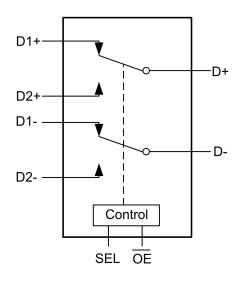
Device	Package	Shipping
WAS7227Q-10/TR	QFN1418-10L	3000/Reel&Tape

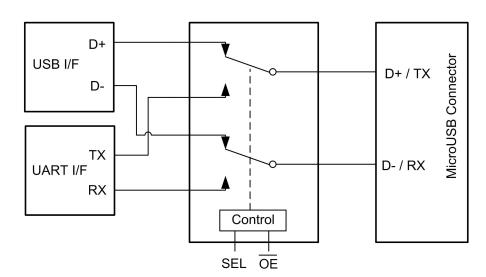
Features

Supply voltage : 2.5~ 5.5V

→ 3dB Bandwidth : 550MHz @ $C_L=5pF$ → Off isolation : -38dB @ 250MHz → Crosstalk : -47dB @ 250MHz

Low quiescent current : <1uA


Pin descriptions


Pin Number	Symbol	Descriptions
1	D+	Port A common data terminal, Connect to D1+ or D2+ according to SEL logic
2	D-	Port B common data terminal, Connect to D1- or D2- according to SEL logic
3	GND	Ground
4	D1-	Port B data 1 terminal
5	D1+	Port A data 1 terminal
6	D2-	Port B data 2 terminal
7	D2+	Port A data 2 terminal
8	ŌĒ	Enable control, Active low
9	VCC	Power supply
10	SEL	Switch select pin, digital logic low or high

Function descriptions

SEL	ŌE	Function	
X	Н	Switch disconnected	
L	L	D+ connect to D1+ and D- connect to D1-	
Н	L	D+ connect to D2+ and D- connect to D2-	

Logic symbol and typical applications

Logic Symbol

Typical Applications

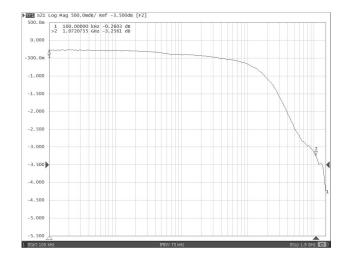
Absolute maximum ratings

Parameter	Symbol	Value	Unit
Supply voltage range	VCC	-0.3 ~ 6.5	V
Data input/output voltage range	V _{AC}	-0.3 ~ 6.5	V
Select input voltage range	Vsel	-0.3 ~ 6.5	V
Continues output current	Гоит	±50	mA
Junction temperature range	TJ	150	°C
Lead temperature range	TL	260	°C
Storage temperature range	T _{STG}	-65 ~ 150	°C
Thermal resistance	R _{θJA}	250	°C/W
ESD protection (HBM)	All pins to GND	±8000	V
ESD protection (CDM)	All pins	±2000	V

Recommend operating ratings

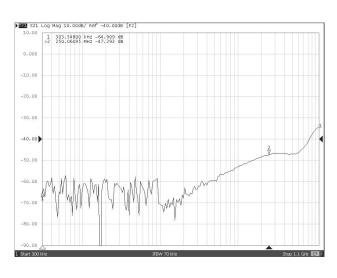
Parameter	Symbol	Value	Unit
Supply voltage range	VCC	2.5 ~ 5.5	V
Data input/output voltage range	V _{IS}	0.0 ~ VCC	V
Select input voltage range	Vsel	0.0 ~ VCC	V
Enable control input voltage range	V _{OE}	0.0 ~ VCC	V
Operating temperature range	T _{OPR}	-40 ~ 85	°C

- 1. "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress only rating and operation of the device at these or any other conditions beyond those indicated in the operational sections of this specification is not implied.
- 2. The input and output negative voltage ratings may be exceeded if the input and output diode current ratings are observed.
- 3. Control input must be held high or Low, it must not float.

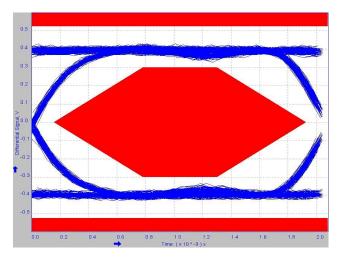


Electronics Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)

Parameter	Symbol	Conditions	Min.	Тур.	Max.	Unit
Salast and OF logic high level	V	VCC=3.6∼4.5	1.6			V
Select and OE logic high level	V _{IH}	VCC=2.5~3.6	1.3			V
Colort and OF lastic last last	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \	VCC=3.6~4.5			0.6	V
Select and OE logic low level	V _{IL}	VCC=2.5~3.6			0.4	V
		I _{OUT} =0,				
Supply guioscopt current	laa	V _{SEL} >1.5V or			1.0	uA
Supply quiescent current	Icc	V _{SEL} <0.7V				uA
		Refer to figure1				
Select pin leakage current	I _{SEL}	V _{SEL} =VCC			±1.0	uA
Off state leakage current	I _{OFF}	Figure 2			±1.0	uA
On state switch leakage current	I _{ON}	Figure 3			±1.0	uA
		VCC=3.0V,				
On Besistance	_D	V _{IS} =0~0.4V,		5.0	7.5	Ω
On-Resistance	Ron	I _{OUT} =8mA,		5.0		
		Figure 4				
		VCC=3.0V,				Ω
On-Resistance match	ΔRon	V _{IS} =0~0.4V,	0.1		0.2	
On-Resistance match		I _{OUT} =8mA,		0.1	0.2	1 22
		Figure 4				
		VCC=3.0V,	1.0			
On-Resistance flatness	R _{FLAT(ON)}	V _{IS} =0~1.0V,		1.8	2.2	Ω
OII-Resistance natness	TFLAT(ON)	I _{OUT} =8mA,	1.0		2.2	1 22
		See figure 4				
Propagation delay time	T _{PLH} / T _{PHL}	$C_L=5pF, R_L=50\Omega$		0.25		ns
Propagation delay time	IPLH/IPHL	Figure 5		0.23		115
Select input to switch on time	T _{ON}	C_L =10pF, R_L =50 Ω		48	70	ns
Select input to switch on time	ION	Figure 6		70	10	113
Select input to switch off time	T _{OFF}	C_L =10pF, R_L =50 Ω		43	65	ne
Select input to switch on time	IOFF	Figure 6	43		00	ns
Break-Before-Make time	T _{BBM}	Generated by design	0.5			ns
2dD Dandwidth	BW	$R_L=50\Omega$, $C_L=5pF$		550		MHz
-3dB Bandwidth	DVV	$R_L=50\Omega$, $C_L=0pF$		800		IVII7Z
Off isolation	OIRR	R _L =50Ω, F=250MHz		-38		dB
Crosstalk	Xtalk	R _L =50Ω, F=250MHz		-47		dB
Select pin input capacitance	C _{IN}	VCC=0V		3.5		pF
D1n, D2n,Dn Off capacitance	Coff	VCC=3.3V, OE =3.3V		2.5		pF
D1n, D2n,Dn On capacitance	Con	VCC=3.3V, OE=0V		3.8		pF



Typical Characteristics (Ta=25°C, VCC=4.5V, unless otherwise noted)



Bandwidth

Off isolation

Crosstalk

Eye Diagram (480Mbps)

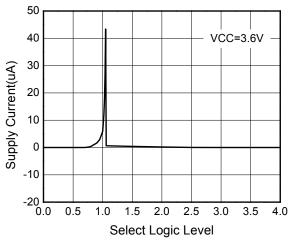
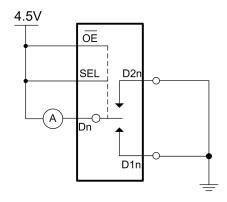



Figure 1: Supply current vs. Logic level

Test Circuit

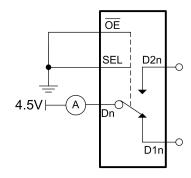
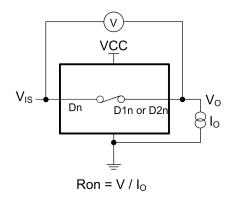



Figure 2: Off state leakage current

Figure 3: On state leakage current

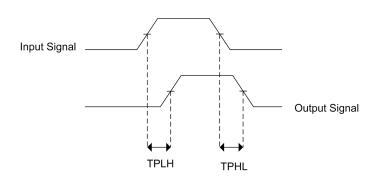


Figure 4: On-Resistance

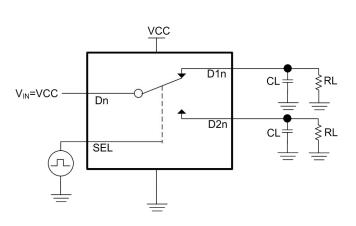


Figure 5: Propagation delay time

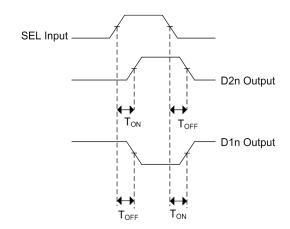
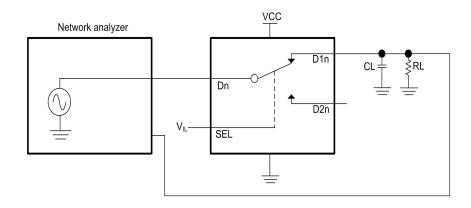
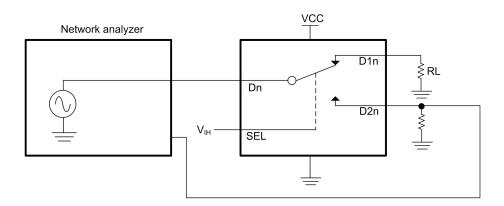
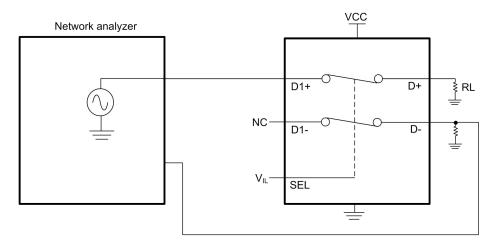
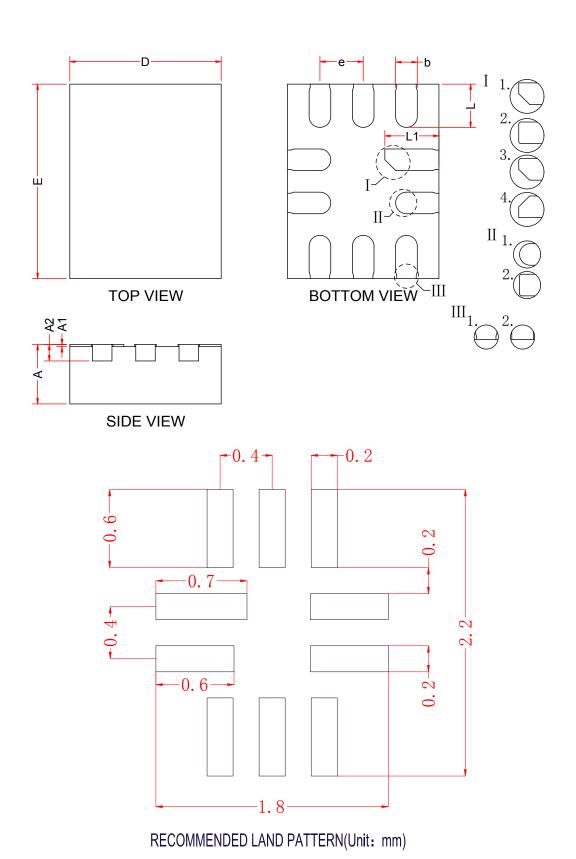




Figure 6: Select input to switch on/off time



Bandwidth (BW)

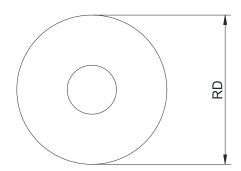
Off isolation (OIRR)



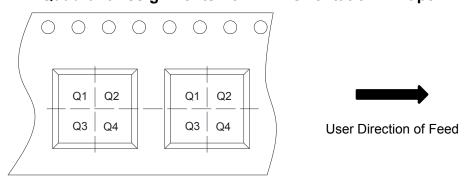
Crosstalk (Xtalk)

PACKAGE OUTLINE DIMENSIONS

QFN1418-10L



Comple al	Di	Dimensions in Millimeters				
Symbol	Min.	Тур.	Max.			
А	0.50	0.55	0.60			
A1		0.02 0.05				
A2		0.152REF				
D	1.30	1.40	1.50			
Е	1.70	1.80	1.90			
b	0.15	0.15 0.20 0.25				
е		0.40 BSC				
L	0.30	0.40	0.50			
L1	0.40	0.50	0.60			


TAPE AND REEL INFORMATION

Reel Dimensions

Tape Dimensions H H H H H A

Quadrant Assignments For PIN1 Orientation In Tape

RD	Reel Dimension	▼ 7inch	13inch		
W	Overall width of the carrier tape	₹ 8mm	12mm		
P1	Pitch between successive cavity centers	2mm	✓ 4mm	☐ 8mm	
Pin1	Pin1 Quadrant	☑ Q1	□ Q2	□ Q3	□ Q4